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Proxy measures of genome-wide heterozygosity based on approx-
imately 10microsatellites have been used to uncover heterozygosity
fitness correlations (HFCs) for a wealth of important fitness traits in
natural populations. However, effect sizes are typically very small
and the underlying mechanisms remain contentious, as a handful of
markers usually provides little power to detect inbreeding. We
therefore used restriction site associated DNA (RAD) sequencing
to accurately estimate genome-wide heterozygosity, an approach
transferrable to any organism. As a proof of concept, we first RAD
sequenced oldfield mice (Peromyscus polionotus) from a known
pedigree, finding strong concordance between the inbreeding coef-
ficient and heterozygosity measured at 13,198 single-nucleotide
polymorphisms (SNPs). When applied to a natural population of har-
bor seals (Phoca vitulina), a weak HFC for parasite infection based on
27 microsatellites strengthened considerably with 14,585 SNPs, the
deviance explained by heterozygosity increasing almost fivefold to
a remarkable 49%. These findings arguably provide the strongest
evidence to date of an HFC being due to inbreeding depression in
a natural population lacking a pedigree. They also suggest that un-
der some circumstances heterozygosity may explain far more varia-
tion in fitness than previously envisaged.
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It has long been known that inbreeding can reduce fitness, mainly
through the unmasking of recessive or partially recessive dele-

terious alleles (1). Such effects are well documented in the labo-
ratory (2, 3) but until recently have remained largely unstudied in
natural populations (4, 5). This is because an individual’s in-
breeding coefficient (f) can be calculated directly only by using
a deep pedigree, and these pedigrees are seldom available outside
the laboratory (6). However, because inbreeding increases an
individual’s homozygosity, the heterozygosity of a panel of neutral
genetic markers can in theory be used as a surrogate for f.
Initial searches for heterozygosity fitness correlations (HFCs)

(7, 8) used allozymes, but the results obtained are difficult to
interpret because the proteins themselves may be under selec-
tion. With the discovery of microsatellites, an abundant class of
putatively neutral genetic marker, it became possible to look for
HFCs without concerns about selection on the markers them-
selves. A burgeoning literature now shows that HFCs based on
small numbers of microsatellite loci are found in many bird and
mammal species for a remarkable range of fitness traits, in-
cluding neonatal survival (9), parasite susceptibility (10) and
lifetime reproductive success (11), and even behavioral qualities
such as territory-holding ability (12), song complexity (13) and
attractiveness (14). This weight of evidence suggests that HFCs
are an important and widespread phenomenon in the natural
world. It is therefore important to understand their basis.
Theory predicts that HFCs arise as a result of inbreeding

depression, which will reduce the fitness of individuals in pro-

portion to their inbreeding coefficient f (7). Therefore, variance
in inbreeding coefficients within a population is necessary to
generate HFCs. However, simulation and empirical studies in-
dicate that the variance in f in natural populations is usually low,
and estimates of f based on the small numbers of markers typi-
cally deployed are often very poor (15). As a result, HFCs will
usually be weak or nonsignificant even when inbreeding actually
explains a large proportion of fitness. Szulkin et al. (16) sum-
marized this by saying that HFCs allow one to see only the “tip of
the iceberg” and provided two examples in which heterozygosity
explains 3% and 6% of trait variation even though inbreeding
is expected to account for 24% and 30% of the variance, re-
spectively. The most favorable situations to observe HFCs are in
populations where inbred individuals are not rare due to factors
such as small population size, extreme reproductive skew, and
natal philopatry (15), but even in these cases using only a few
markers severely curtails the power to observe the actual impact
of inbreeding.
To explain HFCs, authors also frequently invoke “local effects”

where one or a small number of the microsatellites used as markers
are by chance linked to a gene experiencing heterozygote advan-
tage (8). Local effects are widely discussed in the literature, but
their importance is unclear given that balanced polymorphisms are
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thought to be rare (17) and strong linkage between random pairs of
loci is infrequent (16). It has also been argued that the contribution
of local effects to HFCs may be overstated due to many studies
having used an inappropriate statistical framework (16).
One means of unambiguously testing whether inbreeding alone

can explain HFCs is to deploy a larger number of genetic markers
(18). If an HFC is due to inbreeding depression, the use of more
markers will reduce the error variance in the estimation of ge-
nome-wide heterozygosity and thereby strengthen the correlation.
In contrast, if the HFC is highly dependent on one or a few
marker loci being by chance linked to a fitness locus with strong
effects, as in the local effect model, adding more markers located
throughout the genome will reduce the strength of the HFC as
the contribution of any one marker becomes progressively di-
luted. Until recently, however, this approach was not available to
most studies because of the prohibitive costs of developing and
screening large numbers of additional microsatellites.
Restriction site associated DNA (RAD) sequencing (19) has

recently emerged as a rapid and economic means of genotyping
thousands of single nucleotide polymorphisms (SNPs) in virtually
any organism. This approach concentrates high-throughput se-
quencing effort around restriction enzyme cut sites that are dis-
tributed across the genome, thereby generating sufficiently deep
local sequence coverage to reliably call SNPs as being either
heterozygous or homozygous. Although SNPs are individually less
informative than microsatellites due to their lower allelic diversity,
this should be more than compensated for by the large numbers
of markers screened, in principle allowing genome-wide het-
erozygosity to be estimated with far greater precision than
previously possible.
Here, we evaluated the ability of RAD sequencing to accurately

estimate genome-wide heterozygosity using an experimental
population of oldfield mice (Peromyscus polionotus subgriseus)
with known pedigree-based inbreeding coefficients (20). We
then applied RAD sequencing to a natural population of harbor
seals (Phoca vitulina) to determine whether inbreeding explains
previously reported HFCs for survivorship and parasite infection
(21). We hypothesized that these HFCs should strengthen with
the deployment of many thousands of SNPs if they are due
to inbreeding.

Results
Relationship Between RAD Heterozygosity and f. Illumina RAD se-
quencing of 36 oldfield mice yielded 265 million paired-end reads
(Fig. S1) that were assembled into 63,129 RAD tags (Fig. S2A) as

described in SI Methods and SI Results. After SNP calling and
filtering (Figs. S3 and S4), 13,198 tags were retained for further
analysis, each of which contained a single biallelic SNP (Fig. S5).
Individual heterozygosity was expressed using the measure sMLH,
which corrects for the fact that not all individuals are genotyped
for the same loci by standardizing average multilocus heterozy-
gosity in an individual by the average observed heterozygosities in
the population of the subset of loci for which the focal individual
was genotyped (10). RAD sMLH was strongly correlated with
pedigree-based f (Fig. 1, r2 = 0.74, P < 0.0001), far more so than
sMLH at 12 microsatellites (r2 = 0.28, P = 0.0003). A highly sig-
nificant relationship was also obtained between RAD allele shar-
ing and pedigree-based pairwise relatedness (r = 0.94, P < 0.0001),
which was stronger than the equivalent relationship based on
microsatellites (r = 0.68, P < 0.0001).
Variation in inbreeding within a population increases the vari-

ance in sMLH beyond that expected if heterozygosities at different
loci were statistically independent. As expected, this genetic signa-
ture of inbreeding is conspicuous in a plot of the distribution of
RAD sMLH in our sample of oldfield mice (Fig. 2A). The excess
in variance is quantified by a parameter called g2, which measures
the extent to which heterozygosities are correlated across loci and
can be computed from genotype data using the method of David
et al. (22). In our sample of oldfield mice, g2 calculated from 13,198
SNPs was 0.035 ± 0.007 SD, which is significantly different from

Fig. 1. Correlation between pedigree-based inbreeding coefficient (f) and
RAD standardized multilocus heterozygosity (sMLH) for 36 oldfield mouse
individuals. The r2 for the equivalent relationship based on 12 microsatellites
is substantially lower at 0.276.

Fig. 2. Observed distributions of RAD sMLH (shaded bars) together with
expected distributions under the null hypothesis of g2 = 0 (solid curves),
meaning that there is no variance in inbreeding. See Methods for details.
Results are shown separately for (A) oldfield mice genotyped at 13,198 SNPs
and (B) harbor seals genotyped at 14,585 SNPs.
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zero (P < 0.001). With so many markers, the sampling of loci does
not result in any appreciable estimation error, and even with as few
as 2,000 SNPs this error is still very small (Fig. S6).
The large number of SNPs deployed also suggests that RAD

heterozygosity should provide a very precise estimate of in-
dividual f: From table 2 in Szulkin et al. (16) the expected cor-
relation between sMLH and f, denoted rsMLH,f, is −1.03 (±0.024
SD). Pedigree-based estimates of f can be used to provide direct
estimates of g2 and of rsMLH, f, which turn out to be slightly lower
(g2 = 0.028 ± 0.009 SD; rsMLH, f = −0.86) than those based on the
RAD data. As discussed later, this is to be expected because
pedigree f does not capture all of the variance in inbreeding
due to unknown founder relatedness, possible pedigree errors,
and the random deviation of actual heterozygosity from the
statistical expectation.
The accuracy of RAD-based heterozygosity estimates was

further confirmed by dividing the markers into two random
subsets, computing the correlation in sMLH between the two,
and repeating this 1,000 times to obtain a distribution of hetero-
zygosity–heterozygosity (het-het) correlation coefficients (15). The
resulting values are tightly centered on a mean of 0.975 (±0.006
SD; Fig. 3) for the RAD data, whereas the equivalent value based
on 12 microsatellites is only 0.187 (±0.125 SD). Again, as few as
2,000 SNPs are sufficient to obtain a strong positive correlation
(Fig. S7A). This suggests that genome-wide heterozygosity can be
reliably estimated from the many thousands of markers generated
by RAD sequencing.
Data on body mass at weaning were also available for the old-

field mice, allowing us to quantify the strength of association with
f and marker heterozygosity. Separate generalized linear models
(GLMs) of mass were constructed in which f, microsatellite sMLH,
and RAD sMLH were fitted respectively as predictor variables,
together with sex and the two-way interactions. Only the genetic
terms were retained in the reduced models, in which f was sig-
nificant at P = 0.027 (F1,35 = 5.35), microsatellite sMLH at P =
0.037 (F1,35 = 4.69), and RAD sMLH at P = 0.025 (F1,35 = 5.51).
Thus, RAD sMLH is at least as good a predictor of body mass as
pedigree f.

Application to a Natural Vertebrate Population. Sixty harbor seals
were RAD sequenced, generating 374 million paired-end
reads (Fig. S1). These were assembled into 83,148 RAD tags

(Fig. S2B), of which 14,585 were retained for further analysis
(details in SI Methods and SI Results). Similarly to the oldfield
mouse, a strong signal of inbreeding was present in the RAD
data, with g2 estimated at 0.028 ± 0.009 SD (P < 0.001), which in
our experience is a high value for a natural population (16). This
is also illustrated by the empirical sMLH distribution (Fig. 2B),
which has a much larger variance than expected in the absence
of variation in inbreeding. Consequently, RAD heterozygosity
is a very precise estimate of individual inbreeding (rsMLH, f =
−0.97) in this sample, whereas the equivalent number based on
27 microsatellites is only −0.21. Accordingly, the mean het-het
correlation coefficient increases from 0.090 ± 0.084 SD based on
27 microsatellites to 0.941 ± 0.011 SD (Fig. 3) for the RAD data.
This signal is slightly weaker than in the oldfield mouse both
overall and when equivalent-sized random subsets of SNPs are
considered (Fig. S7A). However, this is expected, as g2 is lower than
in the experimental oldfield mouse population where inbreeding
coefficients range from 0 to 0.45. Moreover, the SNPs are on av-
erage less heterozygous in the harbor seals than in the mice (mean
unstandardized MLH = 0.062 ± 0.011 SD and 0.164 ± 0.029 SD,
respectively) and are therefore relatively less informative (Fig. S5).
If an HFC is due to inbreeding depression, adding more markers

should improve the estimate of f, and the relationship between
fitness and average marker heterozygosity should strengthen
(18). To test this prediction empirically, we fitted RAD sMLH
as a predictor variable in GLMs of two fitness-related traits,
longevity and parasite infection, both of which were coded as
binary response variables (details in SI Methods). Young harbor
seals, defined as being less than 1 y of age, showed a nonsignificant
tendency to be less heterozygous at microsatellites than older seals
(Fig. 4, F1,59 = 2.09, P = 0.15). This difference strengthened to
become marginally significant with RAD heterozygosity (F1,59 =
4.39, P = 0.04). However, when a single highly heterozygous out-
lier (RAD sMLH = 1.73, two-tailed Grubbs’ test, α = 0.05) was
removed from the analysis, RAD heterozygosity no longer
remained significant (F1,58 = 3.14, P = 0.08).
As infection and mortality due to lungworm burden occur

mainly during the first year of life, we restricted our analysis of
parasite infection to the young seals, 23 of which were infected
with lungworms. We found that a close to significant trend for
lungworm-infected seals to have lower microsatellite heterozy-
gosity than uninfected seals (Fig. 4, F1,29 = 3.51, P = 0.06) became
highly significant with the RAD data (F1,29 = 16.03, P = 6.23 ×
10−5). Moreover, the deviance in lungworm infection explained
by heterozygosity increased almost fivefold from 10.8% to 49.2%.
By implication, genome-wide heterozygosity strongly influences
susceptibility to lungworm infection.
To further test the prediction that an HFC should strengthen

with marker number if inbreeding depression is responsible, we
reran the GLM of parasite infection after randomly sampling
five subsets each of between 50 and 14,000 SNPs and recalcu-
lating RAD sMLH. The average percentage deviance explained
by heterozygosity increased gradually with SNP number before
leveling off at around 7,000 loci (Fig. S7B). This pattern is very
similar to the observed relationship between the number of
randomly subsampled SNPs and the mean correlation in sMLH
among markers (Fig. S7A). We also explored sensitivity to SNP
minor allele frequency (MAF) by partitioning the marker set into
loci with MAFs above and below 0.1, recalculating RAD sMLH
for both and fitting these together in the model. Both categories
of SNP were highly significant and thereby contribute toward the
overall signal (MAF < 0.1, F1,29 = 18.40, P = 1.79 × 10−5; MAF >
0.1, F1,29 = 8.27, P = 0.004). That the lower-frequency SNPs were
more significant probably reflects the far larger sample size of
loci (12,455 vs. 2,130, respectively).

Fig. 3. The strength of correlation in heterozygosity among loci. The
markers for which animals were genotyped were randomly divided into two
equal groups and the correlation coefficient (r) between the resulting sMLH
values was calculated. This procedure was repeated 1,000 times to generate
distributions of r values. Values centering around zero suggest that inbred
individuals are rare or absent, whereas increasingly positive values indicate
that inbred individuals are present.
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Discussion
We evaluated the ability of RAD sequencing to estimate genome-
wide heterozygosity using a pedigreed oldfield mouse population
with substantial inbreeding (up to f = 0.45) over six gen-
erations. We show that RAD heterozygosity is far more strongly
correlated with f than microsatellite heterozygosity and that the r2

further increases to 0.93 if three outliers are removed. Addi-
tionally, the RAD data yield high het-het correlation coefficients
and RAD sMLH is a marginally better predictor of body mass
than f. Taken together, these findings suggest that RAD hetero-
zygosity is a better estimate of genome-wide heterozygosity than
pedigree-based estimates of f in our study. Although the exact
reasons for the three outliers are unclear, in this case they are
more likely the result of pedigree errors or mislabeled samples
than unknown levels of relatedness among the founders. First, any
effects of founder relatedness would be propagated throughout
the pedigree and should therefore affect the majority of individuals.
Second, although we do not have RAD genotypes of the founders,
we were able to obtain relatively crude estimates of founder re-
latedness based on microsatellite and amplified fragment length
polymorphism data reported previously (20). Adjusting the pedi-
gree inbreeding coefficients with these estimates of founder re-
latedness did not improve the correlation with RAD hetero-
zygosity. Regardless of the exact causes, our findings suggest
that typing a very large number of loci may under certain cir-
cumstances allow one to estimate inbreeding even more pre-
cisely than from a pedigree. Furthermore, RAD sequencing
provides a tool for error checking and otherwise refining
pedigrees.
SNPs are attractive markers for correlating genome-wide het-

erozygosity with fitness (23). Although they are individually less
variable than microsatellites, SNPs can be rapidly and economi-
cally genotyped in large numbers. Even so, it has been argued that
for a large mammalian genome, a “herculean survey of 3,000
markers” will be required to produce a correlation between

heterozygosity and f of around 0.4 (24). This is supported by two
recent studies that correlated sMLHwith f in captive zebra finches,
obtaining r values of −0.07 based on 771 SNPs (25) and −0.46
based on 1,359 SNPs (26). However, we show that RAD se-
quencing is capable of screening the heterozygosity of at least
an order of magnitude more SNPs, bringing a commensurate
improvement in the estimation of genome-wide heterozygosity. In
our study, much of the inbreeding signal is captured by a couple of
thousand markers (Figs. S6 and S7), but clearly the number of loci
required in other systems will depend upon the extent to which
genome-wide heterozygosity varies among individuals (15). This is
currently unknown for most natural populations, although ap-
proaches such as ours make it increasingly amenable to study.
A number of factors could potentially introduce bias into our

sMLH estimates, although these would be expected to affect most
individuals within a sample to a similar extent. For example, in the
absence of linkage maps we were unable to discriminate between
SNPs on autosomes and sex chromosomes, meaning that our esti-
mate of heterozygosity for males will be slightly lower than het-
erozygosity averaged over the autosomes. A second bias stems from
the fact that RAD markers are affected by nonamplifying “null
alleles,” which result mainly from mutations in the restriction en-
zyme recognition site. Based on the number of RAD tags without
any SNP polymorphisms in our datasets, the level of nucleotide
polymorphism, π, is estimated to be of the order of 0.002. There-
fore, with an 8-base restriction enzyme, null alleles are expected to
be found in at most only 2% of RAD markers. Null alleles are an
issue for many marker types, including microsatellites, and result in
a downward bias in estimated heterozygosity. Third, RAD markers
paired on either side of restriction cut sites are in strong linkage and
are therefore nonindependent. In our datasets, as only 10–20% of
RAD tags contain a SNP (SI Results), the likelihood of tags on
either side of a restriction cut site each carrying a SNP is relatively
low. Consistent with this, based on calculations of pairwise linkage
disequilibrium among all SNPs, ∼10% of SNPs are estimated to be
in strong linkage disequilibrium with another SNP in both study
systems. These factors will introduce some imprecision into esti-
mates of heterozygosity and may be responsible for some of the
unexplained variance in Fig. 1.
Despite these caveats, there are reasons to believe that RAD

sequencing may produce less biased estimates of heterozygosity
than many other SNP genotyping approaches. High-density gen-
otyping arrays, for example, are usually based on SNPs identified
from small “discovery panels” of individuals. This can distort the
allele frequency spectrum, as SNPs with intermediate allele fre-
quencies tend to be overrepresented and rare SNPs are often
missing (27). As a result, estimates of heterozygosity based on the
polymorphic SNPs tend to be inflated, whereas genome-wide het-
erozygosity will be underestimated because low-frequency SNPs
are ignored (28). Thus, although no single approach is perfect,
RAD sequencing at least eliminates ascertainment bias because
the entire sample serves as the discovery panel.
Contrasting MAF distributions were obtained for the oldfield

mice and the harbor seals, the latter being strongly left skewed
(Fig. S5). Although we are unable to discount the possibility that
at least some of the low-frequency variants in the harbor seals
could be technical artifacts, we thoroughly explored the SNP
calling parameter space in the oldfield mouse, using pedigree
information to derive optimal parameters that were then applied
equally to both species (SI Methods and SI Results). We also
guarded against spurious genotypes by constructing the reference
genome against which the reads were aligned using tags that
were present in at least two individuals. Finally, SNPs with MAFs
below 0.1 were found to contribute significantly toward the
overall HFC signal, suggesting that they carry useful information
about inbreeding. A plausible explanation for these contrasting
distributions is therefore that they reflect species-specific dif-
ferences in population size and history. Oldfield mice occur

Fig. 4. Relationship between sMLH, estimated from microsatellites and
RAD genotypes, and two fitness-related traits in harbor seals. Bars with light
shading represent mean (± SEM) microsatellite sMLH and bars with dark
shading represent mean (± SEM) RAD sMLH. Sample sizes are given above
the bars. (Left) The mean (± SEM) sMLH of young and older seals, the former
being classified as those that died before reaching 1 y of age (details in
Methods). A nonsignificant tendency based on 27 microsatellites for youn-
ger seals to have lower heterozygosity than older seals strengthens to P =
0.04 when 14,585 SNPs are deployed. (Right) The mean (± SEM) sMLH of
young seals with and without lungworms. A nonsignificant trend for
infected seals to have lower heterozygosity than uninfected seals based on
27 microsatellites becomes significant at P < 0.0001 with 14,585 SNPs.
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across much of the southeastern United States and can reach
densities of 18–26 animals per hectare (29). Relatively high av-
erage heterozygosity and an abundance of SNPs with inter-
mediate allele frequencies could therefore be explained by a large
and stable effective population size. In contrast, many pinniped
species show evidence of strong demographic responses to historical
changes in the marine environment, usually through rapid pop-
ulation expansion during periods of increased food or habitat
availability (30, 31). Little is known about the historical demog-
raphy of harbor seals, although the Waddensee population has
been reported to have low heterozygosity (32), which is consistent
with the effective population size having at some point in the past
been very small. The excess of low-frequency polymorphisms could
therefore be attributable to postglacial population expansion.
Het-het correlations (15) are often used to test for the pres-

ence of inbred individuals, but with only around 10 markers
commonly deployed, this approach lacks power because the
marker subsets are very small. This is exactly what we found (Fig.
3): the distribution of microsatellite-based het-het correlation
coefficients in the oldfield mouse was slightly positive but with
a large SD, despite the sample containing highly inbred indi-
viduals (f ≤ 0.45). In contrast, the RAD data yielded het-het
correlation coefficients well in excess of 0.9 for both the oldfield
mice and harbor seals. This provides clear evidence for inbred
individuals being present not only in the mouse pedigree but also
in the natural harbor seal population.
A second line of evidence also points toward the HFCs for

survival and parasite infection being due to inbreeding depression
in harbor seals. With inbreeding, the deployment of additional
markers should strengthen the HFC detected, whereas with a local
effect adding more markers is expected to weaken the relationship
between mean heterozygosity and fitness (18). We found that the
microsatellite-based HFC for lungworm infection strengthened
considerably with RAD heterozygosity, the statistical significance
increasing from P = 0.06 to P < 0.0001. Such a dramatic
strengthening of effect has not been previously reported, although
one study was able to replicate an HFC for birth weight (but not
one for juvenile survival) using independent panels of 10 micro-
satellites (33). Furthermore, the deviance in lungworm infection
explained by heterozygosity steadily increases with the number of
SNPs deployed (Fig. S7B), which is also strongly suggestive of
genome-wide effects contributing toward inbreeding depression
rather than the underlying mechanism being a local effect. Finally,
an alternative explanation based on population structure seems
highly unlikely as we found no evidence for distinct genetic clus-
ters within the RAD dataset (Fig. S8).
Although many reported HFCs yield highly significant P val-

ues, the proportion of variance explained tends to be small,
typically of the order of 1–5% (34). This could be interpreted as
meaning that heterozygosity only weakly affects fitness. Alter-
natively, heterozygosity could have a large effect on fitness, but
because a small panel of microsatellites provides a poor estimate
of f, these studies could have limited power to detect such
effects. Theory predicts that, if inbreeding is the primary mech-
anism and thousands of markers could be deployed, the pro-
portion of fitness explained by HFCs would rise considerably (15,
16, 18). This is exactly what we found in wild harbor seals, where
the deviance in lungworm infection status explained by hetero-
zygosity increased from around 10% based on 27 microsatellites
to nearly 50% with 14,585 SNPs. This is not only qualitatively,
but also quantitatively consistent with the theoretical predictions.
Under the hypothesis that inbreeding is responsible for HFCs,
when switching from microsatellites to RAD SNPs, the variance
in infection status explained by heterozygosity (r2sMLH, infection)
should increase in proportion to the predicted squared correlation
coefficient between heterozygosity and f. Based on the g2 and
variance in sMLH in microsatellites and SNPs estimated in young
seals, the expected r2sMLH, f is 0.148 for microsatellites and 0.709

for SNPs. This expected 4.8-fold difference is in line with the
observed 5-fold increase in deviance explained by the HFC. Thus,
our results are consistent with inbreeding theory.
Our study clearly demonstrates that at least some HFCs may

explain more variation in fitness than previously thought. However,
we compared cases with controls, and it is possible that the former
could be enriched for a small subset of unusually inbred individuals.
Natal philopatry and breeding site fidelity can also be extremely
strong in pinnipeds (35, 36) and might combine with polygyny to
increase the risk of inbreeding. Moreover, historical changes in
the structure of a population, including bottlenecks or population
admixture, may also create variance in inbreeding in a broad
sense (16). It therefore remains to be seen whether inbreeding
depression could be responsible for HFCs more generally, as
suggested by Szulkin et al. (16). This represents a fertile area for
future research.
Finally, within a genome one expects that heterozygosities

should be more correlated between closely linked loci than between
unlinked ones (37, 38). Linkage is expected to result in stronger
HFCs in some linkage groups than in others (i.e., local effects).
However, in our study, models ignoring linkage strongly predict
survival and parasite infection status in harbor seals, suggesting that
local effects contribute very little to these HFCs, as predicted by
theoretical arguments (16). The observed increase in variance
explained when thousands of loci are deployed at least rules out the
possibility that these relationships arise from local linkage dis-
equilibria between microsatellites and one or a few phenotypically
important loci in the absence of genome-wide inbreeding.
In conclusion, the fact that microsatellite heterozygosity is often

poorly correlated with f in natural populations has been used as an
argument for obtaining more and better pedigrees (39). However,
we show that RAD sequencing is capable of generating enough
SNP data to accurately estimate inbreeding, in this particular case
even more accurately than from a pedigree of reasonable depth.
Our approach is also powerful for studying heterozygosity because
it can be applied to virtually any species without the need for prior
genomic information.

Methods
Oldfield Mouse. A population of oldfield mice was founded at Brookfield
Zoo from 26 wild-caught individuals. These mice were paired to produce
offspring with a range of inbreeding coefficients (0–0.453) over six gen-
erations of laboratory breeding and the resulting pedigree was recorded.
Using 179 of these mice, Dasmahapatra et al. (20) reported a significantly
negative correlation between pedigree-based inbreeding coefficient and
heterozygosity estimated from 12 microsatellite loci. We selected 40 of these
individuals at random for RAD sequencing, 36 of which yielded data of
sufficient quality for analysis (details in SI Methods). The breeding study and the
animal care protocols for the oldfield mice were approved by the Institutional
Animal Care and Use Committee of the Chicago Zoological Society.

Harbor Seal. Rijks et al. (21) reported a negative association between het-
erozygosity at 27 microsatellites and lungworm burden in dead harbor seals
stranded on the Dutch Wadden Sea coast. However, this was only statisti-
cally significant for young seals, defined as being less than 1 y of age, which
were more likely to carry lungworms than older seals (21). We therefore
RAD sequenced all 43 of the young seals from this study, together with
37 older seals selected at random from the 161 available. The sampling
locations of these individuals are shown in Fig. S9. RAD sequence data of
adequate quality were obtained for 30 of the young seals, of which 23 were
infected with lungworms, plus 30 older seals, none of which carried lung-
worm infections (SI Methods).

RAD Genotyping. RAD libraries were constructed from whole genomic DNA
using the protocol of Baird et al. (19) with minor modifications (details in
SI Methods), and each library was 100-bp paired-end sequenced on an Illumina
HiSeq2000 flow cell. Sequences have been deposited in the Short Read Archive
(accession no. PRJEB5164). Separately for the mice and seals, Stacks (40) was
used to quality filter reads, demultiplex samples, and assemble RAD stacks
together with their associated paired-end contigs. After further stringent
filtering steps, RAD contigs were used as a reference against which to map
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back the raw reads using BWA (41), followed by maximum-likelihood ge-
notype calling using the GATK UnifiedGenotyper (42). Individual heterozy-
gosity and pairwise relatedness were calculated using tag sequences
containing only one biallelic SNP per tag. A detailed description of the
bioinformatics pipeline used is provided in SI Methods.

Data Analyses. For all analyses of the microsatellite and RAD data, individual
heterozygosity was expressed as sMLH, which is defined as the total number
of heterozygous loci in an individual divided by the sum of average observed
heterozygosities in the population over the subset of loci successfully typed in
the focal individual (10). Pairwise relatedness (RAD allele sharing) was cal-
culated as the total number of identical alleles between individuals (zero,
one, or two per tag) divided by twice the number of tags considered. The
two-locus heterozygosity disequilibrium g2 was measured following David
et al. (22) with the method of computation modified to analyze many
thousands of loci in a reasonable computing time (details in SI Methods).
Sensitivity of this estimate to the number of loci was explored by ran-
domly selecting different-sized subsets of loci (between 50 and 15,000)
and recalculating g2 100 times. Distributions of RAD sMLH under the hy-
pothesis g2 = 0 were obtained by shuffling genotypes at each locus randomly

across individuals 1,000 times; as the resulting distribution is very close to nor-
mal and the mean is one according to the definition of sMLH, we extracted the
variance from these 1,000 simulations and used it to represent the expected
distribution as a normal curve. The mean correlation in heterozygosity across
loci based on 1,000 random samples was calculated using Rhh (43).

Statistical analyses were conducted using GLMswithin R (44). A linear error
structure was used for oldfield mouse body mass and a binomial error
structure was used for harbor seal age (coded as 0 = young and 1 = old) and
lungworm burden (coded as 0 = uninfected and 1 = infected). Where models
included multiple predictor variables, standard deletion testing procedures
using F tests were used to sequentially remove each term unless doing so
significantly reduced the amount of deviance explained (deviance is analo-
gous to sums of squares in standard regression analysis).
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SI Methods
Restricted Site Associated DNA Library Construction. Total genomic
DNA was extracted from mouse skin samples and seal kidney
samples stored in 95% (vol/vol) ethanol at −20 °C, using
a modified phenol-chloroform protocol (1). Eight hundred
nanograms of DNA from each sample was individually di-
gested with 20 units SbfI, followed by the ligation of P1 adapters
with unique 5-base barcodes for each individual in a restriction site
associated DNA (RAD) library. To minimize errors during se-
quence demultiplexing, at least 2 bases differed between each of the
P1 adapter barcodes. Uniquely barcoded samples were pooled and
then sheared to ∼400 bp on a Covaris S2 sonicator. For each library,
fragments in the size range 300–700 bp were excised from an agarose
gel. Following end repair and A-tailing, a P2 paired-end adapter
(P2 top oligo 5′-/5Phos/CTCAGGCATCACTCGATTCCTCCGA-
GAACAA-3′ and P2 bottom oligo 5′-CAAGCAGAAGACGGCA-
TACGACGGAGGAATCGAGTGATGCCTGAG*T-3′, where *
denotes a phosphorothioate bond; both oligos of the P1 adapters
were also modified with a phosphorothioate bond at the same
position) was ligated to the size-selected DNA. This template
was subjected to 16–17 cycles of PCR enrichment, followed by
agarose gel size selection of the 300 to 700-bp fraction. Three
oldfield mouse (Peromyscus polionotus) and four harbor seal
(Phoca vitulina) RAD libraries were prepared, each comprising
a pool of 14 and 20 individuals, respectively. Each library was
paired-end sequenced on an Illumina HiSeq2000 flow cell. DNA
quantification was carried out using a Qubit fluorometer (In-
vitrogen). Agencourt AMPure XP magnetic beads (Beckman
Coulter) were used for all reaction clean-up stages.

Bioinformatic Analyses. FastQC (www.bioinformatics.babraham.
ac.uk/projects/fastqc/) was used for initial sequence quality as-
sessment. Fluidics problems were encountered during the se-
quencing of the harbor seal RAD libraries. Consequently, the last
36 bases of the paired-end reads required trimming due to very
low sequence quality. These libraries were sequenced a second
time and the two datasets combined for subsequent analyses.
Stacks process_radtags.pl (2) was used to filter the raw fastq se-
quences and to demultiplex the samples according to the P1
barcode. At this stage, 6 oldfield mouse and 20 harbor seal sam-
ples with very low numbers of sequences were removed from the
datasets. The failure of these libraries was due to the inadvertent
use of faulty P1 adapters for these samples.
Our pipeline for obtaining single nucleotide polymorphism

(SNP) genotypes from the Illumina sequence data involved: (i)
clustering of sequences into RAD contigs using Stacks version
0.9999 (2); (ii) using the resulting contigs as a reference genome
for mapping the sequences within BWA version 0.6.2 (3); and (iii)
SNP calling using the GATK UnifiedGenotyper version 2.1.13 (4).
The GATK UnifiedGenotyper (4) uses a Bayesian genotype like-
lihood model outputting accurate posterior probabilities of there
being a segregating variant allele at each locus as well as for the
genotype of each sample. Thus, our pipeline allowed us to take
advantage of the more sophisticated and statistically more rigor-
ous genotyping and SNP calling framework implemented within
the GATK UnifiedGenotyper compared with Stacks.
i) Clustering of sequences into RAD contigs using Stacks. Sequences from
all individuals were combined to create a “superparent”. Stacks
denovo_map.pl (2) was then used with the superparent acting as
a pseudoparent to de novo assemble read 1 sequences into RAD
tags. To remove potentially spurious and uninformative tags, the
tags generated above were filtered to include only those present

in at least two individuals. The paired-end reads corresponding to
each of the remaining tags were assembled into contigs using the
Stacks sort_read_pairs.pl and exec_velvet.pl scripts (2). Stacks
constructs individual tags based on read 1 sequence similarity but
does not take into account the paired-end sequence. Therefore,
as an additional quality-control step aimed at eliminating any tags
potentially comprising more than one locus, only tags for which a
single contig was assembled from the paired-end reads were re-
tained. A reference genome was then constructed from these tag
sequences together with their corresponding paired-end contigs,
padded out with Ns corresponding to the average size of the
RAD library sequenced.
ii) Mapping sequences using the reference genome. The original demul-
tiplexed paired-end fastq files were mapped back to the reference
genome using BWA (3) with default parameters. SAMtools (5) was
used for SAM and BAM file manipulation. Picard MarkDuplicates
version 1.89 (http://picard.sorceforge.net) was used to remove PCR
duplicates. Individual BAM files for each sample were merged into
a single file.
iii) Genotype calling.Genotypes were called using the GATK Uni-
fiedGenotyper (3) with default parameters (6) except with –hets
0.01 to reflect the higher levels of polymorphism found in these
mammals compared with humans. As linked SNPs are non-
independent, only tags containing a single polymorphic SNP
were retained for subsequent analyses. This measure also guards
against the inclusion of false-positive SNPs assembled from
paralogous loci (7).

Calculation of RAD-Based Heterozygosity and Relatedness. An indi-
vidual’s heterozygosity was calculated as the total number of
heterozygous tags divided by the number of tags for which the
individual was called. Because not all individuals were called for
the same loci, we then standardized individual heterozygosity val-
ues by the mean average observed heterozygosity in the population
of the subset of loci successfully typed in the focal individual
[standardized multilocus heterozygosity (sMLH)] (8). Pairwise re-
latedness (RAD allele sharing) was calculated as the total number
of identical alleles between individuals (zero, one, or two per tag)
divided by twice the number of tags considered.

Filtering of Genotypes. To maximize the signal-to-noise ratio, we
explored a range of filtering thresholds based on genotype quality
(GQ), low coverage (LC), and mapping quality (MQ). The
oldfield mouse pedigree was used to assess the impact of such
filtering by measuring the strength of correlation between (i)
pedigree-based inbreeding coefficient f and RAD heterozygosity
and (ii) pedigree-based relatedness and RAD allele sharing
(Figs. S3 and S4, respectively). Studies often use a GQ threshold
>30. However, applied to our data we observed a strong system-
atic bias whereby individuals with lower sequence depth of
coverage, and therefore fewer called SNPs, tended to be called
as highly heterozygous. This probably reflects the fact that
a heterozygote genotype can be called with higher confidence
at low depth of coverage, but to be confident of a homozygote
call requires a larger number of reads. To further explore this
bias at low sequence coverage, we randomly subsampled the
oldfield mouse RAD sequences across all individuals to mimic
50% and 25% of the actual coverage (Figs. S3 and S4, re-
spectively).
Filtering based on MQ thresholds had a negligible impact on

the data. However, the r2 between pedigree-based f and RAD
heterozygosity declined with a combination of increasing GQ
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and decreasing LC threshold, and this pattern was exacerbated
when average sequencing depth was reduced by subsampling the
data (Fig. S3). The correlation between pedigree-based re-
latedness and RAD allele sharing was also optimal for filtering
thresholds of GQ ≥ 1 and a LC ≥ 2, as was the number of RAD
tags retained (Fig. S4). Consequently, to provide the best bal-
ance between SNP quality and the number of tags retained for
analysis, we filtered genotypes obtained from GATK using a
GQ ≥ 1, corresponding to the maximum-likelihood genotype,
and a LC ≥ 2 to generate the final oldfield mouse SNP dataset.
The same filtering criteria were subsequently used for the har-
bor seals.

Computation of g2 with Large Numbers of Loci. Notations. In the
following we denote Hik an indicator variable that takes a value
of 1 if individual k is heterozygous at locus i and 0 otherwise.
When there are missing data, some of these values are unknown;
in that case we denote ~Hik a variable that takes a value of 1 if the
individual k is known to be heterozygous at locus i and 0 if its
genotype at locus i is either unknown or known to be homozy-
gous. xik denotes a constant that takes a value of 1 if the datum is
missing for individual k at locus i and 0 otherwise. The number of
individuals in the sample is N, whereas the number of loci is L.
We denote ~hk =

PL

i=1
~Hik the number of known heterozygous loci

in an individual k, μi =EðHiÞ the expectation of true heterozy-
gosity at locus i in the population, and mi and mij the proportions
of individuals with missing data at locus i and at both locus i and
locus j, respectively. We also define ~μi = ð1−miÞμi the expected
proportion of individuals that can be successfully scored and found
heterozygous in the sample. The ms are considered as constants
characteristic of a sample, whereas the μs are population charac-
teristics. Hats (⋀) denote estimates based on data from a sample,
rather than true values of population parameters.
Estimation of g2 . The estimates of g2 presented by David et al. (9)
and implemented in the RMES software are (correcting for ty-
pographical errors)

ĝ2 =

XL

i=1

X
j≠i

 XN

k=1
~Hik ~Hjk

!
XL

i=1

X
j≠i

1
ðN − 1Þ

 XN

k1=1

X
k2≠k1

~Hik1
~Hjk2

!− 1 [S1]

in the absence of missing data, which becomes

in the presence of missing data.
These estimates are impractical when the number of loci is high

because of the double summations over all pairs of loci. With
15,000 loci, the double summations take of the order of 0.2 × 109

computation steps (which then have to be multiplied by N2 as
there are also double summations over individuals). To reduce

computation time, we can look for an estimate of g2 that takes
a more computationally tractable form. The basic assumption
behind this computation (which also underlies the previous
estimates) is that the distribution of true heterozygosity is the
same in missing data as in nonmissing data. In such conditions
it can be shown that

g2 =
1+ ðB−CÞ=A

1+ α
− 1;

where

A=
XL
i=1

X
j≠i

~μi~μj =

 XL
i=1

~μi

!2

−
XL
i=1

~μ2i ;

B=VAR
�
~hk
�

C=
XL
i=1

VAR
�
~Hi

�

α =

"XL
i=1

X
j≠i

~μi~μjαij

#,
A;

with

αij =
mij −mimj�

1−mi
��
1−mj

�:
The αs represent the extent to which missing loci are clustered
within individuals; in the absence of clustering (i.e., missing data
occur independently at all loci), they would be zero; however, it
is possible that some individuals may have more missing data
than others on average, for example because they would have
a lower coverage in the RAD sequences. α is the weighted aver-
age of the αijs.

Unbiased estimators of the ~μis are simply found by averaging
over individuals as b~μi = 1

N
PN

i=1
~Hik.

ĝ2 =

XL

i=1

X
j≠i

1
N
�
1−mi −mj +mij

� XN

k=1
~Hik ~Hjk

!
XL

i=1

X
j≠i

1
NðN − 1Þ�1−mi −mj +mimj

�
−N

�
mij −mimj

� XN

k1=1

X
k2≠k1

~Hik1
~Hjk2

!− 1
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Unbiased estimators of A, B, and C can then be obtained as

Â=
N

N − 1

24 XL
i=1

b~μi
!2

−
XL
i=1

b~μ2i
35−

Ĵ
N − 1

;

with Ĵ = 1
N

XN

k=1
~h
2
k −
XL

i=1
b~μi,

B̂=
1

N − 1

24XN
k=1

~h
2
k −

1
N

 XN
k=1

~hk

!2
35

Ĉ=
N

N − 1

0@XL
i=1

b~μi − XL
i=1

b~μ 2
i

1A:

All these equations do not require double summation over loci
and can therefore be computed in a reasonable time. However,
computing α in principle requires this double summation. To
avoid this, one can assume that the αijs do not vary a lot between
pairs of loci. With this approximation we obtain the following
estimate of α,

bα=
XN

k=1
M̂k −N

 XL

i=1
b~μi mi

1−mi

!2
+N

XL

i=1

 b~μi mi

1−mi

!2
ðN − 1ÞÂ+ Ĵ

;

in which

M̂k =

 XL
i=1

b~μi xik
1−mi

!2
−
XL
i=1

 b~μi xik
1−mi

!2
:

This does not require a double summation over loci and the final
estimate of g2 reads

ĝ2 =
1+
�
B̂− Ĉ

�.
Â

1+bα − 1:

This estimate is slightly biased because the ratio of expectations
differs from the expectation of a ratio; however, with reasonable
conditions (say, when individuals have on average 10 or more
successfully scored, heterozygous loci), the bias is very small (9). The
SD can be obtained by bootstrapping over individuals. All of the
computations were done using a Mathematica program, available
upon request (a Windows executable will be made available in the
near future).

Bayesian Analysis of Population Structure. Population structure can
potentially generate spurious associations between heterozygosity
and fitness (10, 11). Consequently, we used the program Struc-
ture 2.3.4 (12) to conduct a Bayesian cluster analysis of the
harbor seal RAD dataset, comprising 60 individuals genotyped
at 14,585 SNPs. Structure uses a maximum-likelihood approach

to determine both the most likely number of distinct genetic
groups (K) in a sample and the probability of membership of
every individual to each of these K groups. We ran three in-
dependent runs for K = 1–5 using 100,000 Markov chain Monte
Carlo iterations after a burn-in of 100,000 steps and specifying an
admixture model with correlated allele frequencies. To be able
to detect even a very weak signature of population structure, we
implemented the LOCPRIOR model, using age class as prior
information to assist the clustering (13). LOCPRIOR tends to
outperform the standard model when populations are weakly
differentiated, providing more accurate estimates of K together
with improved group membership coefficients.

SI Results
Oldfield Mouse. RAD sequencing of 36 oldfield mice generated
265 million paired-end reads, of which 231 million contained
appropriate barcodes and the RAD restriction site and passed
initial quality filtering, resulting in an average of 6.4 million
paired-end reads per individual, varying between 2.5 million and
11 million (Fig. S1). These reads were assembled into 79,360
contigs, which, after eliminating those with multiple paired-end
contigs, were reduced to 63,129. Average contig length including
the paired end was 479 bp (±117-bp SD). A total of 16,060
contigs (25.4%) mapped to the mouse genome, using an e-value
threshold of 1e−10 to reveal a broad genomic distribution (Fig.
S2A). Following SNP calling and filtering as described in SI
Methods, 13,198 RAD tags were retained for downstream anal-
ysis, each containing a single biallelic SNP. Most of these SNPs
were called in the majority of individuals (Fig. S5).

Harbor Seal. RAD sequencing of 60 harbor seals generated 374
million paired-end reads, of which 280 million contained ap-
propriate barcodes and the RAD restriction site and passed initial
quality filtering, resulting in an average of 3.6 million paired-end
reads per individual, varying between 0.6 and 9.6 million (Fig. S1).
These data were assembled into 126,121 contigs, of which 83,148
were retained after filtering out those with multiple paired-end
contigs. Average contig length including the paired end was 538
bp (±135-bp SD). A broad genomic distribution was inferred by
mapping 44,961 contigs (35.6%) to the dog genome (Fig. S2B).
Following SNP calling and filtering, 14,585 RAD tags were re-
tained for downstream analyses, most of which were present in
the majority of sequenced individuals (Fig. S5).
Differences in heterozygosity between old and young seals

could potentially arise if the two age classes originated from
separate populations rather than from the same panmictic pop-
ulation. Consequently, we subjected our harbor seal RAD dataset
to Bayesian cluster analysis, using the program Structure (12). The
average log-likelihood value increased from K = 1 to K = 2 and
thereafter leveled off (Fig. S8A). Although this appears to indicate
support for the presence of more than one genetic cluster, in-
spection of the membership probabilities to each of the inferred
clusters shows that no signal of population structure is present,
with all individuals being predominantly assigned to a single cluster
(each bar is almost entirely blue in color) and the remaining
clusters making negligible contributions (Fig. S8 B–E).
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Fig. S1. Distribution of the number of RAD sequence reads obtained across samples. Oldfield mice and harbor seals are denoted by solid and shaded bars,
respectively.

Fig. S2. Inferred chromosomal distributions of (A) oldfield mouse and (B) harbor seal contigs (details in SI Methods). The oldfield mouse contigs were BLASTed
against the mouse (Mus musculus) genome and the harbor seal contigs were BLASTed against the dog (Canis familiaris) genome, using an e-value cutoff of 1e−10.
Chromosomal distributions are based on a bin size of 1,000 bp with the x axis being scaled relative to the largest chromosome and the maximal y axis being
10 contigs per bin.
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Fig. S3. The effect of varying two genotype filtering thresholds, genotype quality and low-coverage cutoff, on the strength of the relationship between
pedigree-based inbreeding coefficient f and RAD heterozygosity in the oldfield mouse. A, C, and E show the r2 between pedigree f and RAD heterozygosity
based on 100%, 50%, and 25% of the sequence data, respectively, across all 36 individuals. B, D, and F show the corresponding median numbers of RAD tags
retained for analysis. Local regression, implemented using the “locfit” package in R, was used to fit smoothed splines to the raw datasets.
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Fig. S4. The effect of varying two genotype filtering thresholds, genotype quality and low-coverage cutoff, on the strength of the relationship between
pedigree-based relatedness and RAD allele sharing in the oldfield mouse. A, C, and E show the correlation coefficient between the two relatedness measures
based on 100%, 50%, and 25% of the sequence data, respectively. B, D, and F show the corresponding median numbers of RAD tags retained for analysis. Note
that fewer RAD tags in general are retained for allele sharing because each tag needs to be called in more than one individual to be counted. Local regression,
implemented using the locfit package in R, was used to fit smoothed splines to the raw datasets.
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Fig. S5. Summary of 13,198 SNPs called in the oldfield mouse (A and C) and 14,585 SNPs called in the harbor seal (B and D). A and B show the distribution of
SNP coverage across individuals. The majority of SNPs were called in most of the individuals. C and D show corresponding minor allele frequency (MAF)
distributions.
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Fig. S6. Relationship between the number of randomly subsampled SNPs and g2 (±SD) in (A) oldfield mice and (B) harbor seals.
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Fig. S7. Relationship between the number of randomly subsampled SNPs and (A) the mean (± SEM) correlation in sMLH among markers, with black circles
denoting oldfield mice and red circles harbor seals, and (B) the mean (± SEM) percentage deviance explained by sMLH in the generalized linear model (GLM) of
parasite infection in harbor seals.
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Fig. S8. Results of the Structure analysis of the harbor seal RAD dataset. (A) Average log-likelihood value values based on three replicates for each value of K,
the hypothesized number of clusters in the data. (B–E) Clustering results shown separately for K = 2–5. Each individual is represented by a vertical bar par-
titioned into different segments, the lengths of which indicate the probability of membership in the different clusters.
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Fig. S9. Spatial distribution of the harbor seals in our sample set. Young seals with lungworm, young seals without lungworm, and old seals without
lungworm are denoted by open, shaded, and solid sections, respectively. The diameter of each pie chart corresponds to the number of seals tested per location.
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